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1.0 Continuous calculation
The Fourier transform is an essential tool in engineering. The 
Fourier transform of a signal in the time domain s(t) is the 
continuous spectral function of the signal in the frequency 
domain S(f). The calculation is performed with

+∞
⌠

S(f) = � s(t) e-i2πft dt
⌡

-∞

The transformation back into the time domain is carried out 
with

+∞
⌠

S(t) = � s(f) ei2πft df
⌡

-∞

Cepstrum analysis is an analytical method based on the Fourier 
transform.

The calculation of the cepstrum of a signal s(t) from the time 
domain is carried out by complex logarithmization of the 
Fourier transform S(f) and subsequent inverse Fourier 
transform.

+∞
⌠

C(t) = � ln(s(f)) ei2πft df
⌡

-∞

The Fourier transform of a real time signal is a complex 
function. Its logarithmization is limited to the main values.

ln(x+iy) = ½ ln(x +y22 ) + i*[sgn(y)*π/2 - arctan(x/y)]
One application of cepstrum analysis is the detection of signal 
echoes, such as those that occur in multipath propagation [1].

The aim of this work is to show that the duration of pulses can 
be determined with the help of the cepstrum, independent of the 
signal amplitude in the time domain.
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For example, if the time function of a pulse is

s(t) = a * sin(2*π*f0 *t) � 0 <= t <= τ

gives the Fourier transform of s(t) with

τ
⌠

S(f) = � a*sin(2*π*f *t) e-i2πft dt
⌡
0

and, after a short calculation, a form of the part of the 
spectrum above f that is favorable for logarithmization0 .

a * (f-f )0
S(f) = ---------- * [1 - e-i2π (f+f0) ]τ

2π(f -f )22

a *(f-f )0
ln(S(f)) = ln( ----------) + ln[1 - e-i2π (f+f0) ]τ

2π(f -f )22

According to the properties of the Fourier transform, the 
summands can be transformed individually into the time domain. 
The same calculation can be performed for the part of the 
spectrum below f .0
It is to be expected that the duration of the pulse can be 
recognized in the cepstrum of s(t) because the pulse length is 
formally included. Because of its complex part, the second 
summand will be considered in the following.

The transformation into the time domain is carried out with

+∞
⌠

C(t) = � ln(1 - e-i2π (f+f0)τ ) e dfi2πft 

⌡
-∞

Partial integration leads to considerable difficulties here, 
but the first factor in the integral can be represented by a 
series.

∞

ln(1-x) = ∑ x /kk �k∈N
k=1

By inserting you get
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+∞
⌠ ∞C(t) = � ∑ 1/k ei2π(f+f0)[f*t/(f0+f)-k*τ] df
⌡ k=1

-∞

∞

C(t) = ∑ 1/(k*g) δ(t-k*τ) �k∈N
k=1

δ(t-τ) is the delta function, with the property of being 
undefined at the point of its occurrence and zero otherwise. 
Its area is one [2],[3],[4]. It corresponds to a
Needle impulse.

The needle pulses therefore o c c u r in the cepstrum of s(t) at 
the times nτ, which correspond to whole multiples of the pulse 
length of S(t).

In addition, the equation shows that the amplitude of the 
needle pulses is independent of the amplitude of s(t). The 
factor g only contains multiples of 2π and the pulse duration.
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2.0 Discrete calculation
A sampling series consisting of M=16384 samples is populated to 
1/8 of the number with values of the function

s(m) = a*sin(2*π*m/M) 
where a=32768 is initially assumed.

Figure 1 - Scanning series s(m)

To avoid spectral broadening in the discrete spectrum of s(m), 
the sampling series is evaluated with the Hanning function.

w(m) = ½(1 - cos(2πm/M))
The transformation into the frequency range is carried out with

M-1
S(n) = ∑ s(m) e-i2πmn/M

n=0

A Fast Fourier transform calculates the discrete Fourier 
transform, which is now an approximation of the coefficients to 
the Fourier series.

Figure 2 shows the magnitude of the spectral lines for positive 
frequencies (0 <= n <= N/2) and negative frequencies (N/2 < n < 
N). As this is a real sampling series, the spectral values of 
the negative frequencies are conjugate-complex to those of the 
positive frequencies.
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Figure 2 - Semi-logarithmic representation of the amount of the discrete spectrum

The complex logarithmization of the N spectral values is then 
performed.

An inverse Fast Fourier transform then calculates the cepstrum 
of s(m).

Figure 3 shows the magnitude of the cepstrum consisting of N 
cepstral values. In contrast to the discrete spectrum, the 
second half is not redundant to the first half of the data. 
However, the temporal arrangement of the delta functions, which 
appear as the sum of cos(x)/x + i*sin(x)/x due to the time-
limited calculation, is symmetrical to n=N/2.
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Figure 3 - Semi-logarithmic representation of the amount of the cepstrum of s(m)

The delta functions can be found at N/2+k*mτ +1 and N/2-k*mτ -1, 
where mτ is 1/8 * M in this example. If TA is the sampling interval, the pulse length results, among other things, in

τ = (nk - N/2 - 1) / k * TA .
By transformation into the frequency domain, de-
logarithmization, back-transformation into the time domain and 
inverse Hanning evaluation, the sampling series s(m) can be 
recovered exactly, as with the simple Fourier transformation.

In words, the occurrence of the delta functions can be 
formulated as follows:

Delta functions occur at points in time at which an echo 
of s(t) delayed by τ and amplified by g overlaps it 
linearly or s(t) itself overlaps linearly amplified by g 
after the time τ, as in the example above or at other 
mathematically discontinuous points of s(t).

The question to what extent s(n) or s(t) can be reconstructed 
b e y o n d  τ by operations in the cepstrum is left aside here.

Incidentally, a coordinate transformation from rectangular to 
polar coordinates can also be used instead of the complex 
logarithmization. The subsequent inverse FFT results in the 
same temporal positioning and amplitude of the
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Delta functions in the cepstrum, whereby a calculation with 
zeros in the spectrum is permitted.

Figure 4 shows the cepstrum of s(m) with a=1, which corresponds 
to an attenuation of 90.31 dB compared to the example above.

Figure 4 - Semi-logarithmic representation of the amount of the cepstrum of 
s(m) with s(m) = 1 * sin(2πm/M)

It is noteworthy that the amplitude of the delta functions and 
their temporal arrangement do not differ from those of the 
cepstrum of the sampling series s(m) = 32768 * sin(2πm/M).
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3.0 Some examples
Figure 5 shows the magnitude of the complex cepstrum of a 
unipolar rectangular pulse over ¼ of the number of samples. The 
delta functions can be found at n+1 = ¼*N and n-1 = N - ¼*N. 
The amplitude of the sampling series is 32768.

Figure 5 - Cepstrum, shown semi-logarithmically

Figure 6 is the magnitude of the complex cepstrum of a unipolar 
rectangular pulse over half the number of samples.

Figure 6 - Cepstrum, shown semi-logarithmically
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Figure 7 is the complex cepstrum of a unipolar rectangular 
pulse over ¾ of the number of samples. The delta function with 
the maximum amplitude can be found at n-1 = 0.75 * N.

Figure 7 - Complex cepstrum, shown semi-logarithmically

Figure 8 shows the complex cepstrum of a unipolar rectangular 
pulse, which decreases linearly from m = 1/4 * M down to zero 
at m=1/2 * M. The delta pulse with the maximum amplitude is at 
n-1 = ¼ * M. Here, too, the amplitude of the pulse is 32768.

Figure 8 - Complex cepstrum, shown semi-logarithmically
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Comment
Once you have calculated a few transformation pairs using the 
Fourier transform and displayed them graphically, it is easier 
to recognize the relationships between a time function and its 
transform. For example, short pulse-like changes in the time 
function indicate larger values of the transform at the higher 
frequencies in the spectrum.

The user must be aware that the entire information content of 
the time function is contained unchanged in its transform. This 
fact then leads directly to the question: Can components such 
as interference or noise be isolated from the Fourier transform 
by elementary mathematical operations? The author also asked 
himself this question when he was able to learn what he 
considered to be the ingenious theory of the Fourier transform 
at the University of Applied Sciences in Krefeld.

One such elementary mathematical operation is the 
logarithmization of the spectrum, which in the above example of 
continuous calculation leads to a summand that contains the 
pulse duration in complex form.

As already indicated, this is a mathematical discontinuity in 
the time function (gap or kink). One possibility is the 
superimposition of an echo, whereby the discontinuity in the 
time function arises at the point in time at which, for 
example, the transmitted pulse and the received echo coincide. 
This situation results in the enormous sensitivities of some 
commercially available RADAR devices, as the author was able to 
experience for himself when operating a ship's radar (in smooth 
seas, it was possible to detect a
0.5 nm to locate aluminum beverage cans floating on the water).

As shown in this article, it is also conceivable to determine 
the time duration up to the point of discontinuity. The pulse 
length would be determined with approximately the same accuracy 
as the sampling frequency.

Furthermore, it should be considered to what extent 
mathematical manipulations in the cepstrum and subsequent back-
transformation can contribute to the reconstruction of an 
interrupted signal.

In addition, one could also think about other elementary 
mathematical operations applied to the Fourier transform.
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